Recitation 5: Inequalities and L^p Sapce

Lecturer: Chenlin Gu

Exercise 1 (Generalized Hölder's inequality). Assume that $p \in (0, \infty]$ and $p_1, p_2 \cdots, p_n \in (0, \infty]$ such that

$$\frac{1}{p} = \sum_{k=1}^{n} \frac{1}{p_k}.$$

Then for any measurable function $\{f_k\}_{1 \le k \le n}$ *, we have*

$$\left\|\prod_{k=1}^n f_k\right\|_{L^p} \leqslant \prod_{k=1}^n \|f_k\|_{L^{p_k}}$$

Exercise 2. Let $x_1 \cdots x_n$ be positive numbers such that $\sum_{i=1}^n x_i = 1$. Prove that

$$\sum_{i=1}^n \frac{x_i}{\sqrt{1-x_i}} \ge \sqrt{\frac{n}{n-1}}.$$

Exercise 3. Let $0 \leq X_1 \leq X_2 \cdots$ be random variables with $\mathbb{E}[X_n] \sim an^{\alpha}$ with $\alpha > 0$, and $\operatorname{Var}[X_n] \leq Bn^{\beta}$ with $\beta < 2\alpha$. Show that $X_n/n^{\alpha} \to a$ a.s.

Exercise 4. *let* X_n *be independent Poisson random variables with* $\mathbb{E}[X_n] = \lambda_n$ *, and let* $S_n = \sum_{i=1}^n X_i$ *. Show that if* $\sum_n \lambda_n = \infty$ *, then* $S_n / \mathbb{E}[S_n] \to 1$ *a.s.*

Exercise 5 (Shannon entropy). Suppose that X is a random variable taking values x_i with probability p_i , with $0 < p_i < 1$. Define Shannon entropy by

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i.$$

Show that $H(X) \leq \log n$ with equality if and only if $p_i = 1/n$ for all *i*.

- **Exercise 6** (Interpolation inequality). *1. Prove that if random variable* $X \in L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ *for some* p > 1, then for any $p' \in [1, p]$, $X \in L^{p'}(\Omega, \mathcal{F}, \mathbb{P})$.
 - 2. Show that the same statement does not hold for L^p space on \mathbb{R}^d with respect to the Lebesgue measure. More precisely, give some counter example that for any $1 \leq p' < p$, $L^p(\mathbb{R}^d) \not\subset L^{p'}(\mathbb{R}^d)$, and $L^{p'}(\mathbb{R}^d) \not\subset L^p(\mathbb{R}^d)$.
 - 3. † Prove that if $1 \leq p \leq r \leq q$, then if $f \in L^p(\mathbb{R}^d) \cap L^q(\mathbb{R}^d)$, then $f \in L^r(\mathbb{R}^d)$.