Recitation 5: Inequalities and L^{p} Sapce

Lecturer: Chenlin Gu

Exercise 1 (Generalized Hölder's inequality). Assume that $p \in(0, \infty]$ and $p_{1}, p_{2} \cdots, p_{n} \in(0, \infty]$ such that

$$
\frac{1}{p}=\sum_{k=1}^{n} \frac{1}{p_{k}}
$$

Then for any measurable function $\left\{f_{k}\right\}_{1 \leqslant k \leqslant n}$, we have

$$
\left\|\prod_{k=1}^{n} f_{k}\right\|_{L^{p}} \leqslant \prod_{k=1}^{n}\left\|f_{k}\right\|_{L^{p_{k}}} .
$$

Exercise 2. Let $x_{1} \cdots x_{n}$ be positive numbers such that $\sum_{i=1}^{n} x_{i}=1$. Prove that

$$
\sum_{i=1}^{n} \frac{x_{i}}{\sqrt{1-x_{i}}} \geqslant \sqrt{\frac{n}{n-1}}
$$

Exercise 3. Let $0 \leqslant X_{1} \leqslant X_{2} \cdots$ be random variables with $\mathbb{E}\left[X_{n}\right] \sim$ an ${ }^{\alpha}$ with $\alpha>0$, and $\operatorname{Var}\left[X_{n}\right] \leqslant B n^{\beta}$ with $\beta<2 \alpha$. Show that $X_{n} / n^{\alpha} \rightarrow a$ a.s.

Exercise 4. let X_{n} be independent Poisson random variables with $\mathbb{E}\left[X_{n}\right]=\lambda_{n}$, and let $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n} \lambda_{n}=\infty$, then $S_{n} / \mathbb{E}\left[S_{n}\right] \rightarrow 1$ a.s.

Exercise 5 (Shannon entropy). Suppose that X is a random variable taking values x_{i} with probability p_{i}, with $0<p_{i}<1$. Define Shannon entropy by

$$
H(X)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

Show that $H(X) \leqslant \log n$ with equality if and only if $p_{i}=1 / n$ for all i.
Exercise 6 (Interpolation inequality). 1. Prove that if random variable $X \in L^{p}(\Omega, \mathcal{F}, \mathbb{P})$ for some $p>1$, then for any $p^{\prime} \in[1, p], X \in L^{p^{\prime}}(\Omega, \mathcal{F}, \mathbb{P})$.
2. Show that the same statement does not hold for L^{p} space on \mathbb{R}^{d} with respect to the Lebesgue measure. More precisely, give some counter example that for any $1 \leqslant p^{\prime}<p, L^{p}\left(\mathbb{R}^{d}\right) \not \subset L^{p^{\prime}}\left(\mathbb{R}^{d}\right)$, and $L^{p^{\prime}}\left(\mathbb{R}^{d}\right) \not \subset L^{p}\left(\mathbb{R}^{d}\right)$.
3. \dagger Prove that if $1 \leqslant p \leqslant r \leqslant q$, then if $f \in L^{p}\left(\mathbb{R}^{d}\right) \cap L^{q}\left(\mathbb{R}^{d}\right)$, then $f \in L^{r}\left(\mathbb{R}^{d}\right)$.

